C модулем Wi-Fi и Bluetooth.

На Arduino Uno WiFi предусмотрено всё для удобной работы с микроконтроллером: 14 цифровых входов/выходов (6 из них могут использоваться в качестве ШИМ-выходов), 6 аналоговых входов, разъём USB, разъём питания, разъём для внутрисхемного программирования (ICSP) и кнопка сброса микроконтроллера.

Изюминка платы - модуль WiFi ESP8266, который позволяет Arduino обмениваться информацией с другими модулями по беспроводным сетям стандартов 802.11 b/g/n.

ESP8266 позволяет прошивать плату Arduino без использования USB-кабеля в режиме OTA (Firmware Over The Air - «микропрограммы по воздуху»).

Видеообзор платы

Подключение и настройка

Для начало работы с платой Arduino Uno WiFi в операционной системе Windows скачайте и установите на компьютер интегрированную среду разработки Arduino - Arduino IDE.

Что-то пошло не так?

Настройка модуля WiFi

Прошивка Arduino по WiFi

Arduino Uno WiFi имеет в своём запасе ещё один приятный бонус - возможность загружать скетчи без использование USB-шнура в режиме OTA (Firmware Over The Air). Рассмотрим подробнее как это сделать.


Для этого необходимо войти в меню: Инструменты Порт и выбирать нужный порт.

Так как мы прошиваем Arduino по WiFi, плата определиться как удалённое устройство с IP-адресом

Среда настроена, плата подключена. Можно переходить к загрузке скетча. Arduino IDE содержит большой список готовых примеров, в которых можно подсмотреть решение какой-либо задачи. Выберем среди примеров мигание светодиодом - скетч «Blink».
Прошейте плату нажав на иконку загрузки программы.
После загрузки светодиод начнёт мигать раз в секунду. Это значит, что всё получилось.

Теперь можно переходить к примерам использования .

Примеры использования

Web-сервер

Поднимем простой web-сервер, который будет отображать страницу с текущими значениями аналоговых входов.

web-server.ino /* Пример простого web-сервера, работающего на Arduino Uno WiFi. Сервер показывает значения на аналоговых входах и обновляет информацию каждые две секунды. Обратитесь к серверу по адресу http:///arduino/webserver/ Обратите внимание: пример работает только с Arduino Uno WiFi Developer Edition. */ #include #include void setup() { Wifi.begin () ; Wifi.println ("Web Server is up" ) ; // Выводим сообщение о старте сервера в wifi-консоль } void loop() { while (Wifi.available () ) { process(Wifi) ; } delay(50 ) ; } void process(WifiData client) { String command = client.readStringUntil ("/" ) ; if (command == "webserver" ) { WebServer(client) ; } } void WebServer(WifiData client) { client.println ("HTTP/1.1 200 OK" ) ; client.println ("Content-Type: text/html" ) ; client.println ("Connection: close" ) ; client.println ("Refresh: 2" ) ; // Заголовок, который задаёт период обновления страницы в секундах client.println () ; client.println ("" ) ; // Формируем страницу client.println (" UNO WIFI Web-server " ) ; client.print ("

Пример вывода значений с аналоговых пинов

"
) ; client.print ("
    " ) ; for (int analogChannel = 0 ; analogChannel < 4 ; analogChannel++ ) { int sensorReading = analogRead(analogChannel) ; client.print ("
  • на аналоговом входе " ) ; client.print (analogChannel) ; client.print (": " ) ; client.print (sensorReading) ; client.print ("
  • " ) ; } client.println ("
" ) ; client.print (DELIMITER) ; // Не забудьте закрыть соединение! }

Элементы платы

Микроконтроллер ATmega328P

Сердцем платформы Arduino Uno WiFi является 8-битный микроконтроллер семейства AVR - ATmega328P.

Микроконтроллер ATmega16U2

Микроконтроллер ATmega16U2 обеспечивает связь микроконтроллера ATmega328P с USB-портом компьютера. При подключении к ПК Arduino Uno WiFi определяется как виртуальный COM-порт. Прошивка микросхемы 16U2 использует стандартные драйвера USB-COM, поэтому установка внешних драйверов не требуется.

Пины питания

    VIN: Напряжение от внешнего источника питания (не связано с 5 В от USB или другим стабилизированным напряжением). Через этот вывод можно как подавать внешнее питание, так и потреблять ток, если к устройству подключён внешний адаптер.

    5V: На вывод поступает напряжение 5 В от стабилизатора платы. Данный стабилизатор обеспечивает питание микроконтроллера ATmega328. Запитывать устройство через вывод 5V не рекомендуется - в этом случае не используется стабилизатор напряжения, что может привести к выходу платы из строя.

    3.3V: 3,3 В от стабилизатора платы. Максимальный ток вывода - 1 А.

    GND: Выводы земли.

    IOREF: Вывод предоставляет платам расширения информацию о рабочем напряжении микроконтроллера. В зависимости от напряжения, плата расширения может переключиться на соответствующий источник питания либо задействовать преобразователи уровней, что позволит ей работать как с 5 В, так и с 3,3 В устройствами.

Порты ввода/вывода

    Цифровые входы/выходы: пины 0 – 13
    Логический уровень единицы - 5 В, нуля - 0 В. Максимальный ток выхода - 40 мА. К контактам подключены подтягивающие резисторы, которые по умолчанию выключены, но могут быть включены программно.

    ШИМ: пины 3 , 5 , 6 , 9 , 10 и 11
    Позволяют выводить 8-битные аналоговые значения в виде ШИМ-сигнала.

    АЦП: пины A0 – A5
    6 аналоговых входов, каждый из которых может представить аналоговое напряжение в виде 10-битного числа (1024 значений). Разрядность АЦП - 10 бит.

    TWI/I²C: пины SDA и SCL
    Для общения с периферией по синхронному протоколу, через 2 провода. Для работы - используйте библиотеку Wire .

    SPI: пины 10(SS) , 11(MOSI) , 12(MISO) , 13(SCK) .
    Через эти пины осуществляется связь по интерфейсу SPI. Для работы - используйте библиотеку SPI .

    UART: пины 0(RX) и 1(TX)
    Эти выводы соединены с соответствующими выводами микроконтроллера ATmega16U2, выполняющей роль преобразователя USB-UART. Используется для коммуникации платы Arduino с компьютером или другими устройствами через класс Serial .

Светодиодная индикация

Разъём USB Type-B

Разъём USB Type-B предназначен для прошивки платформы Arduino Uno WiFi с помощью компьютера.

Разъём для внешнего питания

Разъём для подключения внешнего питания от 7 В до 12 В.

Регулятор напряжения 5 В

Когда плата подключена к внешнему источнику питания, напряжение проходит через стабилизатор MPM3610 . Выход стабилизатора соединён с пином 5V . Максимальный выходной ток составляет 1 А.

Регулятор напряжения 3,3 В

Стабилизатор MPM3810GQB-33 с выходом 3,3 вольта. Обеспечивает питание модуля WiFi ESP8266 и выведен на пин 3,3V . Максимальный выходной ток составляет 1 А.

ICSP-разъём для ATmega328P

ICSP-разъём предназначен для внутрисхемного программирования микроконтроллера ATmega328P. С использованием библиотеки SPI данные выводы могут осуществлять связь с платами расширения по интерфейсу SPI. Линии SPI выведены на 6-контактный разъём, а также продублированы на цифровых пинах 10(SS) , 11(MOSI) , 12(MISO) и 13(SCK) .

ICSP-разъём для ATmega16U2

ICSP-разъём предназначен для внутрисхемного программирования микроконтроллера ATmega16U2.

Микросхема ESP8266 – один из самых популярных инструментов для организации беспроводной связи в проектах умного дома. С помощью беспроводного контроллера можно организовывать связь по интерфейсу WiFi, обеспечивая проектам Arduino выход в интернет и возможность дистанционного управления и сбора данных. На основе ESP8266 созданы такие популярные платы как WeMos и NodeMcu, а также огромное количество самодельных проектов. В этой статье, мы узнаем, что из себя представляет ESP82266, какие бывают ее разновидности, как работать с ESP8266 в среде Arduino IDE.

ESP8266 – микроконтроллер с интерфейсом WiFi, который имеет возможность исполнять программы из флеш-памяти. Устройство было выпущено в 2014 году китайской фирмой Espressif и практически сразу же стало популярным.

Контроллер недорогой, обладает небольшим количеством внешних элементов и имеет следующие технические параметры:

  • Поддерживает Wi-Fi протоколы 802.11 b/g/n с WEP, WPA, WPA2;
  • Обладает 14 портами ввода и вывода, SPI, I2C, UART, 10-бит АЦП;
  • Поддерживает внешнюю память до 16 МБ;
  • Необходимое питание от 2,2 до 3,6 В, потребляемый ток до 300 мА в зависимости от выбранного режима.

Важной особенностью является отсутствие пользовательской энергонезависимой памяти на кристалле. Программа выполняется от внешней SPI ПЗУ при помощи динамической загрузки необходимых элементов программы. Доступ к внутренней периферии можно получить не из документации, а из API набора библиотек. Производителем указывается приблизительное количество ОЗУ – 50 кБ.

Особенности платы ESP8266:

  • Удобное подключение к компьютеру – через USB кабель, питание от него же;
  • Наличие встроенного преобразователя напряжения 3,3В;
  • Наличие 4 Мб флеш-памяти;
  • Встроенные кнопки для перезагрузки и перепрошивки;
  • Все порты выведены на плату на две гребенки с шагом 2,5 мм.

Сферы применения модуля ESP8266

  • Автоматизация;
  • Различные системы для умного дома: Беспроводное управление, беспроводные розетки, управление температурой, дополнение к сигнализационным системам;
  • Мобильная электроника;
  • ID метки;
  • Детские игрушки;
  • Mesh-сети.

Распиновка esp8266

Существует огромное количество разновидностей модуля ESP8266. На рисунке представлены некоторые из них. Наиболее популярным вариантом является ESP 01.

Исполнение программы требуется задавать состоянием портов GPIO0, GPIO2 и GPIO15, когда заканчивается подача питания. Можно выделить 2 важных режима – когда код исполняется из UART (GPIO0 = 0, GPIO2 = 1 и GPIO15 = 0) для перепрошивки флеш-карты и когда исполняется из внешней ПЗУ (GPIO0 = 1, GPIO2 = 1 и GPIO15 = 0) в штатном режиме.

Распиновка для ESP01 изображена на картинке.

Описание контактов:

  • 1 – земля, 8 – питание. По документации напряжение подается до 3,6 В – это важно учесть при работе с Ардуино, на которую обычно подают 5 В.
  • 6 – RST, нужна для перезагрузки микроконтроллера при подаче на него низкого логического уровня.
  • 4 – CP_PD, также используется для перевода устройства в энергосберегающий режим.
  • 7 и 0 – RXD0 и TXD0, это аппаратный UART, необходимый для перепрошивки модуля.
  • 2 – TXD0, к этому контакту подключается светодиод, который загорается при низком логическом уровне на GPIO1 и при передаче данных по UART.
  • 5 – GPIO0, порт ввода и вывода, также позволяет перевести устройство в режим программирования (при подключении порта к низкому логическому уровню и подачи напряжения) .
  • 3 – GPIO2, порт ввода и вывода.

Основные отличия Ардуино от ESP8266

  • ESP8266 имеет больший объем флеш-памяти, при этом у ESP8266 отсутствует энергонезависимая память;
  • Процессор ESP8266 быстрее, чем у Ардуино;
  • Наличие Wi-Fi у ESP8266;
  • ESP8266 потребляеn больше тока, чем для Ардуино;

Программирование ESP8266 в Arduino IDE

Программный комплект разработчика esp8266 включает в себя:

  • Компилятор из пакета GNU Compiler Collection.
  • Библиотеки, стеки протоколов WiFi, TCP/IP.
  • Средство загрузки информации в программу контроллера.
  • Операционная IDE.

Изначально модули ESP8266 поставляются с прошивкой от фирмы-изготовителя. С ее помощью можно управлять модулем с внешнего микроконтроллера, реализовывать работу с Wi-Fi как с модемом. Также существует множество других готовых прошивок. Некоторые из них позволяют настраивать работу модуля при помощи WEB-интерфейса.

Можно программировать из среды Arduino IDE. При ее помощи можно легко писать скетчи и загружать их в ESP8266, прошивать ESP8266, при этом не требуется сама плата Ардуино. Arduino IDE поддерживает все виды модулей ESP8266.

В настоящий момент для ESP8266 можно реализовать следующие функции:

  • Основные функции языка Wiring. Управлять портами GPIO можно точно так же, как и пинами на плате Ардуино: pinMode, digitalRead, digitalWrite, analogWrite. Команда analogRead(А0) позволяет считать значения АЦП. При помощи команды analogWrite (pin, value) можно подключить ШИМ на нужном выходе GPIO. При value=0 ШИМ отключается, максимальное значение достигает константы, равной 1023.С помощью функций attachInterrupt, detachInterrupt можно выполнять прерывание на любом порте GPIO, кроме 16.
  • Тайминг и delay. Используя команды millis и micros можно вернуть мс и мкс, которые прошли с момента старта. Delay позволяет приостановить исполнение программы на нужное время. Также функция delay(…) позволяет поддерживать нормальную работу Wi-Fi, если в скетче присутствуют большие элементы, которые выполняются более 50 мс. Yield() – аналог функции delay(0).
  • Serial и Serial1 (UART0 и UART1). Работа Serial на ESP8266 аналогична работе на ардуино. Запись и чтение данных блокируют исполнение кода, если FIFO на 128 байт и программный буфер на 256 байт заполнены. Объект Serial пользуется аппаратным UART0, для него можно задать пины GPIO15 (TX) и GPIO13 (RX) вместо GPIO1(TX) и GPIO3(RX). Для этого после функции Serial.begin(); нужно вызвать Serial.swap();. Аналогично Serial1 использует UART1, который работает на передачу. Необходимый пин для этого GPIO2.
  • Макрос PROGMEM. Его работа аналогична работе в Ардуино. Позволяет перемещать данные read only и строковые постоянные во flash-память. При этом в ESP8266 не сохраняются одинаковые константы, что приводит к дополнительной трате флеш-памяти.
  • I2C. Перед началом работы с шиной I2C выбираются шины с помощью функции Wire.pins(int sda, int scl).
  • SPI, OneWire – поддерживаются полностью.

Использование esp8266 для связи Ардуино по WiFi

Перед подключением к Ардуино важно помнить, что у ESP8266 напряжение питания не может быть выше 3,6, в то время как на пате Ардуино напряжение равно 5 В. Соединять 2 микроконтроллера нужно с помощью резистивных делителей. Перед подключением модуля нужно ознакомиться с распиновкой выбранного ESP8266. Схема подключения для ESP8266-01 представлена на рисунке.

3,3 В с Ардуино – на Vcc&CH_PD на модуле ESP8266, Земля с Ардуино – к земле с ESP8266, 0 – TX, 1 – RX.

Для поддержки стабильной работы ESP8266 необходим источник постоянного напряжения на 3,3 В и максимальный ток 250 мА. Если питание происходит от конвертера USB-TTL, могут происходить неполадки и сбои в работе.

Работа с библиотекой Wi-Fi для ESP8266 схожа с библиотекой для обыкновенного шилда. Имеется несколько особенностей:

  • mode(m) – для выбора одного из трех режимов: клиент, точка доступа или оба режима единовременно.
  • softAP(ssid) – нужен для создания открытой точки доступа.
  • softAP(ssid, password) – создает точку доступа с паролем, который должен состоять не менее чем из 8 знаков.
  • WiFi.macAddress(mac) и WiFi.softAPmacAddress(mac)– определяет МАС адрес.
  • WiFi.localIP() и WiFi.softAPIP() – определение IP адреса.
  • printDiag(Serial); – позволят узнать данные о диагностике.
  • WiFiUDP – поддержка передачи и приема multicast пакета в режиме клиента.

Работа выполняется по следующему алгоритму:

  • Подключение USB-TTL к USB и к ESP.
  • Запуск Arduino IDE.
  • Выбрать в меню инструменты нужный порт, плату, частоту и размер flash-памяти.
  • Файл - Примеры - ESP8266WiFi - WiFiWebServer.
  • Записать в скетче SSID и пароль сети Wi-Fi.
  • Начать компиляцию и загрузку кода.
  • Дождаться окончания процесса прошивки, отсоединить GPIO0 от земли.
  • Поставить скорость 115200.
  • Произойдет подключение, будет записан адрес IP.
  • Открыть браузер, ввести в адресной строке номер IP/gpio/1
  • Посмотреть монитор порта, если к выходу GPIO2 подключен светодиод, он должен загореться.

NodeMCU на базе esp8266

NodeMCU – это платформа, основанная на базе модуля esp8266. Используется для управления схемой на расстоянии при помощи интернета через Wi-Fi. Плата малогабаритная, компактная, стоит дешево, на лицевой стороне имеется разъем для USB. Рядом кнопки для отладки и перезагрузки микроконтроллера. Также установлен чип ESP8266. Напряжение питания – от 5 до 12 В, желательно подавать более 10 В.

Большим преимуществом платы является ее малое энергопотребление. Нередко их используют в схемах с автономным питанием. На плате расположены всего 11 портов общего назначения, из них некоторые имеют специальные функции:

  • D1 и D2 – для интерфейса I2C/ TWI;
  • D5-D8- для интерфейса SPI;
  • D9, D10 – для UART;
  • D1-D10 – могут работать как ШИМ.

Платформа имеет современное API для аппаратного ввода и вывода. Это позволяет сократить количество действий во время работы с оборудованием и при его настройке. С помощью прошивки NodeMCU можно задействовать весь рабочий потенциал для быстрой разработки устройства.

WeMos на базе esp8266

WeMos – еще один вид платформы, основанный на базе микроконтроллера esp8266. Соответственно, имеется Wi-Fi модуль, поддерживается Arduino IDE, имеется разъем для внешней антенны. Плата имеет 11 цифровых входов/выходов, которые (кроме D0) поддерживают interrupt/pwm/I2C/one-wire. Максимальное напряжение питания достигает 3,3 В. Также на платформе присутствует USB разъем. Аналоговый вход 1 с максимальным напряжением 3,2В.

Для работы с модулем нужно установить драйвер CH340 и настроить Ардуино IDE под ESP8266. Для этого нужно в меню настройки в строке «дополнительная ссылка для менеджера плат» добавить адрес http://arduino.esp8266.com/stable/package_esp8266com_index.json.

После этого требуется найти пакет esp8266 by ESP8266 и установить его. Затем нужно выбрать в меню инструменты микроконтроллер Wemos D1 R2 и записать нужный скетч.

Выводы по ESP8266

С помощью плат на основе микросхемы ESP8266 вы можете добавить в свои проекты возможности “большого интернета”, сделав их гораздо более интеллектуальными. Дистанционное управление, сбор и анализ данных на сервере, обработка голоса и работа с изображением – все это становится доступным, когда мы подключаем наш проект по WiFi к интернету. В следующих статьях мы подробно рассмотрим то, как можно программировать устройства на базе esp8266, а также уделим внимание таким популярным платам как WeMos и NodeMcu.

В этой статье вы узнаете, как создать систему, которая может включать и выключать нагрузки постоянного тока с помощью мобильного приложения. Вы также узнаете, как выполнить эту задачу мгновенно или по таймерам, заранее установленным для включения и выключения нагрузок.

Обзор проекта

Вы можете реализовать эту систему там, где вам нужно включать нагрузку постоянного тока на определенное время. В этом вам поможет наше Android приложение, не требуя аппаратного интерфейса, клавиатуры и LCD дисплея.

Комплектующие

Сборка макетной платы ESP8266

ESP8266 - недорогой SoC-чип со встроенным микроконтроллером и полным стеком протоколов TCP/IP, что означает, что он может напрямую обращаться к вашей Wi-Fi сети.

Поскольку у этого чипа есть свой микроконтроллер, вы можете поместить в него код своего приложения или можете использовать модуль просто как Wi-Fi приемопередатчик, что мы и собираемся сделать в данном проекте. Более эффективно было бы использовать этот модуль и как приемопередатчик, и как контроллер, но в целях обучения мы будем взаимодействовать с модулем, используя Arduino.

Чип ESP8266 поставляется в разных модулях. Мы будем использовать модуль ESP-01. Конечно, вы можете использовать любой другой модуль.

Во-первых, вы должны знать, что модуль работает с напряжением 3,3 В, и напряжение высокого логического уровня от Arduino должно быть таким же, чтобы не повредить наш модуль. Для этого требуется преобразователь уровня напряжения между платой Arduino (которая работает на 5 В) и модулем. Хорошей новостью является то, что в преобразователе будет нуждаться только вывод для передачи на Arduino, поскольку приемный вывод обычно распознает логические сигналы с напряжением 3,3 В от ESP8266.

Одним из простейших способов выполнения этого преобразования является схема от Sparkfun. Вы можете заказать готовый модуль .

Преобразователь уровня 5В → 3,3В

На рисунке ниже показана распиновка нашего модуля на ESP8266:

Вывод Назначение
UTXD Передача данных через UART
URXD Прием данных через UART. Выход, к которому он подключается, должен быть 3,3 В.
CH_PD Выключение: низкий уровень на входе выключает чип, высокий уровень на входе включает его; для нормальной работы модуля необходимо подтянуть его к линии питания.
GPIO0 При загрузке: должен быть высокий уровень, чтобы входить в нормальный режим загрузки; низкий уровень вводит в специальные режимы загрузки.
GPIO2 При загрузке: низкий уровень заставляет загрузчик войти в режим загрузки флеш-памяти; высокий уровень вызывает нормальный режим загрузки.
RST Сброс; активный уровень - низкий.
GND Земля.
VCC Питание/3,3В.

Я использовал LM317, настраиваемый линейный регулятор напряжения с выходным током до 1,5 А, для обеспечения модуля подходящим источником питания 3,3 В.

Примечание: Не используйте вывод 3,3 В от Arduino, так как стабилизатор напряжения 3,3 В на плате Arduino не может обеспечить необходимую для модуля величину тока, особенно при пиковом потреблении энергии во время передачи.

Я использовал BS170 (вместо BSS138) для преобразователя логических уровней; оба работают хорошо.

Теперь вы можете подключить свой модуль к компьютеру, используя USB-TTL преобразователь, и испытать его.

Сборка макетной платы реле

Для управления реле я использовал биполярный NPN транзистор BC337 с резистором 1 кОм на базе. Для защиты от обратного напряжения катушки я использовал диод 1n4007.

Нормально замкнутый (NC) контакт реле я решил подключить к земле.

Код Arduino

Теперь мы сталкиваемся с проблемой. ESP8266 использует UART в качестве интерфейса для AT-команд, а Arduino Uno (которая использует Atmega328) имеет только один порт UART. Этот порт уже подключен к мосту USB-TTL, а также к выводам 0 и 1.

В качестве решения вы можете использовать эмулятор для UART порта на другом цифровом выводе Arduino с помощью библиотек AltSoftSerial или SoftwareSerial. Это позволит вам по-прежнему иметь аппаратный порт UART для отладки и печати сообщений в консоли, а программный порт - для связи с модулем.

Многие люди (включая меня) сообщают о проблемах с программным последовательным портом при высоких скоростях передачи - как на тех, что мы будем использовать с esp8266, 115200 бит/с. Я могу сказать, что у вас 50% принятых от модуля данных будет повреждено, если вы используете программный UART, а из переданных от Arduino к модулю данных почти 100% будет корректно. Я получил эти результаты после отслеживания сигналов на линиях RX и TX.

В качестве решения я добавил в код несколько директив define , чтобы облегчить вам выбор между аппаратным и программным UART портами. Имейте в виду, что вы не можете использовать один и тот же порт для отладки и общения с модулем, поэтому вам нужно выбирать между ними.

//раскомментируйте Serial.*** , если хотите для связи с ESP использовать аппаратный последовательный порт (выводы 0,1) //раскомментируйте esp8266.*** , если хотите для связи с ESP использовать программный последовательный порт (выводы 2,3) #define esp8266_Available() Serial.available() //esp8266.available() #define esp8266_Find(ARG) Serial.find(ARG) //esp8266.find(ARG) #define esp8266_Read() Serial.read() //esp8266.read() #define esp8266_Write(ARG1,ARG2) Serial.write(ARG1,ARG2) //esp8266.write(ARG1,ARG2) #define esp8266_Print(ARG) Serial.print(ARG) //esp8266.print(ARG)

В исходнике вы найдете часть кода, которая устанавливает модуля с вашим роутером:

SendCommand("AT+RST\r\n", 2000, DEBUG); // перезапустить модуль sendCommand("AT+CWMODE=1\r\n", 1000, DEBUG); // настроить как точку доступа sendCommand("AT+CWJAP=\"tur\",\"341983#tur\"\r\n", 3000, DEBUG); //**** ИЗМЕНИТЬ SSID и ПАРОЛЬ В СООТВЕТСТВИИ С ВАШЕЙ СЕТЬЮ ******// delay(10000); sendCommand("AT+CIFSR\r\n", 1000, DEBUG); // получить ip адрес sendCommand("AT+CIPMUX=1\r\n", 1000, DEBUG); // настроить для нескольких соединений sendCommand("AT+CIPSERVER=1,1337\r\n", 1000, DEBUG); // включить сервер на порту 1337

Цикл скетча ожидает команды, которые должны прийти через Wi-Fi соединение. В настоящее время поддерживаются следующие команды:

  • ‘con’ для получения состояния выводов, высокий или низкий логический уровень;
  • ‘on=’ включить соответствующий вывод;
  • ‘of=’ выключить соответствующий вывод;
  • ‘Tm=n/fS’ установить таймер включения (n) или выключения (f) соответствующего вывода.

Все команды имеют отклик подтверждения.

Примечания:

  • некоторые части скетча основаны на ;
  • если вы используете модули со старым SDK, у вас могут быть такие же ошибки, как и у меня. Единственным решением в этом случае является обновление вашей прошивки до последней версии. Посмотрите , для получения помощи в обновлении прошивки модуля на ESP8266. Я обновил прошивку с версии 1.3 до 1.5.4.

Полный код программы:

#include #define DEBUG 0 // если вы для связи с ESP используете аппаратный последовательный порт, измените значение на 0 #define ESPBaudRate 115200 #define HWSBaudRate 115200 #define OUTPUT1 11 #define OUTPUT2 12 #define OUTPUT3 13 //раскомментируйте Serial.*** , если для связи с ESP хотите использовать аппаратный последовательный порт (выводы 0,1) //раскомментируйте esp8266.*** , если для связи с ESP хотите использовать программный последовательный порт (выводы 2,3) #define esp8266_Available() Serial.available() //esp8266.available() #define esp8266_Find(ARG) Serial.find(ARG) //esp8266.find(ARG) #define esp8266_Read() Serial.read() //esp8266.read() #define esp8266_Write(ARG1,ARG2) Serial.write(ARG1,ARG2) //esp8266.write(ARG1,ARG2) #define esp8266_Print(ARG) Serial.print(ARG) //esp8266.print(ARG) // Делает RX линию Arduino выводом 2, а TX линию Arduino выводом 3. // Это означает, что вам необходимо подключить TX линию от ESP к выводу 2 Arduino, // а RX линию от ESP к выводу 3 Arduino. SoftwareSerial esp8266(2, 3); /*************/ byte OUTPUTstate; byte OUTPUTTMRIsSet ; byte OUTPUTTMRState ; long OUTPUTTimer; /*************/ /***Commands**/ String GETSTATE = "con"; // Строка запроса от мобильного приложения, чтобы узнать состояние каждого выхода String SETON = "on="; // Строка запроса от мобильного приложения, чтобы включить выход String SETOFF = "of="; // Строка запроса от мобильного приложения, чтобы выключить выход String TIMER = "tm="; // Строка запроса от мобильного приложения, чтобы задать таймер для выхода /*************/ void setup() { Serial.begin(HWSBaudRate); // Последовательный порт для отправки сообщений от Arduino на компьютер esp8266.begin(ESPBaudRate); // Программный последовательный порт для отправки сообщений от Arduino на ESP8266 pinMode(OUTPUT1, OUTPUT); digitalWrite(OUTPUT1, LOW); pinMode(OUTPUT2, OUTPUT); digitalWrite(OUTPUT2, LOW); pinMode(OUTPUT3, OUTPUT); digitalWrite(OUTPUT3, LOW); // перезапустить модуль sendCommand("AT+RST\r\n", 2000, DEBUG); // настроить как точку доступа sendCommand("AT+CWMODE=1\r\n", 1000, DEBUG); //**** ИЗМЕНИТЬ SSID и ПАРОЛЬ В СООТВЕТСТВИИ С ВАШЕЙ СЕТЬЮ ******// sendCommand("AT+CWJAP=\"tur\",\"341983#tur\"\r\n", 3000, DEBUG); delay(10000); // получить ip адрес sendCommand("AT+CIFSR\r\n", 1000, DEBUG); // настроить для нескольких соединений sendCommand("AT+CIPMUX=1\r\n", 1000, DEBUG); // включить сервер на порту 1337 sendCommand("AT+CIPSERVER=1,1337\r\n", 1000, DEBUG); if (DEBUG == true) Serial.println("Server Ready"); } void loop() { if (esp8266_Available()) // проверить, послал ли esp сообщение { if (esp8266_Find("+IPD,")) { // ждать, когда последовательный буфер заполнится (прочитаются все последовательные данные) delay(1000); // получить id подключения, чтобы мы могли отключиться int connectionId = esp8266_Read() - 48; // вычитаем 48 потому, что функция read() возвращает // десятичное значение в ASCII, а 0 (первое десятичное число) начинается с 48 String closeCommand = "AT+CIPCLOSE="; // создание команды закрытия подключения closeCommand += connectionId; // добавить id подключения closeCommand += "\r\n"; esp8266_Find("?"); // Этот символ определяет начало команды теле нашего сообщения String InStream; InStream = (char) esp8266_Read(); InStream += (char) esp8266_Read(); InStream += (char) esp8266_Read(); if (DEBUG == true) Serial.println(InStream); if (InStream.equals(GETSTATE)) { // отклик на команду Status=<состояние_выхода_1><состояние_выхода_2><состояние_выхода_3> String response = "Status="; response += OUTPUTstate; response += OUTPUTstate; response += OUTPUTstate; sendHTTPResponse(connectionId, response); sendCommand(closeCommand, 1000, DEBUG); // закрыть подключение } else if (InStream.equals(SETON)) { int pinNumber = (esp8266_Read() - 48); // получить первую цифру, т.е., если вывод 13, то 1-ая цифра равна 1 int secondNumber = (esp8266_Read() - 48); if (secondNumber >= 0 && secondNumber <= 9) { pinNumber *= 10; pinNumber += secondNumber; // получить вторую цифру, т.е., если вывод 13, то 2-ая цифра равна 3, // и добавить ее к первой цифре } if (pinNumber == OUTPUT1) OUTPUTstate = 1; else if (pinNumber == OUTPUT2) OUTPUTstate = 1; else if (pinNumber == OUTPUT3) OUTPUTstate = 1; digitalWrite(pinNumber, 1); String response = "Confg="; // Отклик на команду Confg=<номер_вывода> response += pinNumber; sendHTTPResponse(connectionId, response); sendCommand(closeCommand, 1000, DEBUG); // закрыть подключение } else if (InStream.equals(SETOFF)) { int pinNumber = (esp8266_Read() - 48); // получить первую цифру, т.е., если вывод 13, то 1-ая цифра равна 1 int secondNumber = (esp8266_Read() - 48); if (secondNumber >= 0 && secondNumber <= 9) { pinNumber *= 10; pinNumber += secondNumber; // получить вторую цифру, т.е., если вывод 13, то 2-ая цифра равна 3, // и добавить ее к первой цифре } if (pinNumber == OUTPUT1) OUTPUTstate = 0; else if (pinNumber == OUTPUT2) OUTPUTstate = 0; else if (pinNumber == OUTPUT3) OUTPUTstate = 0; digitalWrite(pinNumber, 0); // изменить состояние вывода String response = "Confg="; // Отклик на команду Confg=<номер_вывода> response += pinNumber; sendHTTPResponse(connectionId, response); sendCommand(closeCommand, 1000, DEBUG); // закрыть подключение } else if (InStream.equals(TIMER)) { int pinNumber = (esp8266_Read() - 48); // получить первую цифру, т.е., если вывод 13, то 1-ая цифра равна 1 int secondNumber = (esp8266_Read() - 48); if (secondNumber >= 0 && secondNumber <= 9) { pinNumber *= 10; pinNumber += secondNumber; // получить вторую цифру, т.е., если вывод 13, то 2-ая цифра равна 3, // и добавить ее к первой цифре } if (esp8266_Read() == "n") { if (DEBUG == true) Serial.println("on"); if (pinNumber == OUTPUT1) OUTPUTTMRState = 1; else if (pinNumber == OUTPUT2) OUTPUTTMRState = 1; else if (pinNumber == OUTPUT3) OUTPUTTMRState = 1; } else { if (DEBUG == true) Serial.println("off"); if (pinNumber == OUTPUT1) OUTPUTTMRState = 0; else if (pinNumber == OUTPUT2) OUTPUTTMRState = 0; else if (pinNumber == OUTPUT3) OUTPUTTMRState = 0; } int j = 0; byte Atime; // Таймер может настроен на максимальное значение в 1 сутки // поэтому программа может принять 5 цифр, так как 1 сутки равны 86400 секундам long Time; // Прочитать секунды, значение имеет переменное количество цифр, поэтому читать, пока не получим "s", // что является символом завершения в теле моего сообщения от мобильного телефона while (1) { Time = esp8266_Read(); if (Time == "s") break; Atime[j] = Time - 48 ; j++; } switch (j) // секунды... { case 1: // одна цифра Time = Atime; break; case 2: // две цифры Time = Atime * 10 + Atime; break; case 3: // три цифры Time = Atime * 100 + Atime * 10 + Atime; break; case 4: // четыре цифры Time = Atime * 1000 + Atime * 100 + Atime * 10 + Atime; break; case 5: // пять цифр Time = Atime * 10000 + Atime * 1000 + Atime * 100 + Atime * 10 + Atime[j]; break; } if (DEBUG == true) { Serial.println("Timer:"); Serial.println(Time); } Time = Time * 1000 + millis(); if (DEBUG == true) { Serial.println("Pin:"); Serial.println(pinNumber); } if (pinNumber == OUTPUT1) { OUTPUTTMRIsSet = 1; OUTPUTTimer = Time; } else if (pinNumber == OUTPUT2) { OUTPUTTMRIsSet = 1; OUTPUTTimer = Time; } else if (pinNumber == OUTPUT3) { OUTPUTTMRIsSet = 1; OUTPUTTimer = Time; } String response = "tConfg="; // Отклик на команду tConfg=<номер_вывода> response += pinNumber; sendHTTPResponse(connectionId, response); sendCommand(closeCommand, 1000, DEBUG); // закрыть подключение } else // принята неподдерживаемая команда { String response = "ERROR"; sendHTTPResponse(connectionId, response); sendCommand(closeCommand, 1000, DEBUG); // закрыть подключение } } } /*****Проверить таймер для каждого выхода******/ if (OUTPUTTMRIsSet != 0 && (OUTPUTTimer < millis())) { digitalWrite(OUTPUT1, OUTPUTTMRState); OUTPUTstate = OUTPUTTMRState; OUTPUTTMRIsSet = 0; } if (OUTPUTTMRIsSet != 0 && (OUTPUTTimer < millis())) { digitalWrite(OUTPUT2, OUTPUTTMRState); OUTPUTstate = OUTPUTTMRState; OUTPUTTMRIsSet = 0; } if (OUTPUTTMRIsSet != 0 && (OUTPUTTimer < millis())) { digitalWrite(OUTPUT3, OUTPUTTMRState); OUTPUTstate = OUTPUTTMRState; OUTPUTTMRIsSet = 0; } /***************************************/ } /* Name: sendData Description: Функция, используемая для отправки данных на ESP8266. Params: command - данные/команда для отправки; timeout - время ожидания отклика; debug - печатать в консоль?(true = да, false = нет) Returns: Отклик от esp8266 (если есть отклик) */ String sendData(String command, const int timeout, boolean debug) { String response = ""; int dataSize = command.length(); char data; command.toCharArray(data, dataSize); esp8266_Write(data, dataSize); // передача символов на esp8266 if (debug) { Serial.println("\r\n====== HTTP Response From Arduino ======"); Serial.write(data, dataSize); Serial.println("\r\n========================================"); } long int time = millis(); while ((time + timeout) > millis()) { while (esp8266_Available()) { // У esp есть данные, поэтому вывести их в консоль char c = esp8266_Read(); // прочитать следующий символ. response += c; } } if (debug) { Serial.print(response); } return response; } /* Name: sendHTTPResponse Description: Функция, которая посылает HTTP 200, HTML UTF-8 отклик */ void sendHTTPResponse(int connectionId, String content) { // создать HTTP отклик String httpResponse; String httpHeader; // HTTP заголовок httpHeader = "HTTP/1.1 200 OK\r\nContent-Type: text/html; charset=UTF-8\r\n"; httpHeader += "Content-Length: "; httpHeader += content.length(); httpHeader += "\r\n"; httpHeader += "Connection: close\r\n\r\n"; httpResponse = httpHeader + content + " "; // Здесь в коде баг: последний символ в "content" не посылается, поэтому я добавил дополнительный пробел sendCIPData(connectionId, httpResponse); } /* Name: sendCIPDATA Description: посылает команду CIPSEND=,<данные> */ void sendCIPData(int connectionId, String data) { String cipSend = "AT+CIPSEND="; cipSend += connectionId; cipSend += ","; cipSend += data.length(); cipSend += "\r\n"; sendCommand(cipSend, 1000, DEBUG); sendData(data, 1000, DEBUG); } /* Name: sendCommand Description: Функция, используемая для отправки данных на ESP8266. Params: command - данные/команда для отправки; timeout - время ожидания отклика; debug - печатать в консоль?(true = да, false = нет) Returns: Отклик от esp8266 (если есть отклик) */ String sendCommand(String command, const int timeout, boolean debug) { String response = ""; esp8266_Print(command); // передача символов на esp8266 long int time = millis(); while ((time + timeout) > millis()) { while (esp8266_Available()) { // У esp есть данные, поэтому вывести их в консоль char c = esp8266_Read(); // прочитать следующий символ. response += c; } } if (debug) { Serial.print(response); } return response; }

Android приложение

Чтобы управлять всеми выше перечисленными аппаратными компонентами, мы будем использовать простое приложение для Android. Это приложение позволит нам включать или выключать выход напрямую или через определенный период времени.

Примечание: Приложение требует Android 4.0 (IceCreamSandwich) или выше.

  • Прежде всего, вы должны знать IP адрес своего модуля. Если вы использовали программный последовательный порт, IP адрес будет напечатан в консоли. Если вы использовали аппаратный последовательный порт, то вы должны использовать кабель для отслеживания данных на линиях RX и TX, чтобы увидеть IP адрес. Вам также нужно знать номер порта, который был указан в скетче для Arduino. После этого нажмите "connect", чтобы получить состояние всех трех выходов. Вам нужно убедиться, что ваш Wi-Fi роутер включен, и вы подключены к локальной сети.
  • Теперь нажмите на любой переключатель, который вы хотите включить/выключить. Всякий раз, когда захотите, вы можете нажать "refresh", чтобы обновить состояние всех выходов.
  • На вкладке "Timers" вы можете установить любой из этих трех выходов для включения/выключения через определенный промежуток времени (от 0 до 24 часов).
  • После любого действия вы получите сообщение с подтверждением о том, выполнилась ли команда успешно, или возникла какая-то ошибка.

Демонстрационное видео

Вот и всё! Надеюсь, статья оказалась полезной. Оставляйте комментарии!

В этой статье информация о том как собрать свой танк, оснащенный Web Камерой и управляемый посредством Wifi роутера.

Необходимые материалы:

  1. Web Camera
  2. Роутер TP-Link TL-MR3020
  3. Сервоприводы SG90 - 2шт
  4. Camera Platform Anti-Vibration
  5. Аккумулятор 7.2V 5000mah
  6. Аккумулятор 5V 2000mah
  7. Nano 3.0 Atmel ATmega328
  8. L298N motor driver
  9. Провода, термотрубки, USB хаб, диоды и другое.
  10. Платформа на ваш вкус, я выбрал DD1-1

Сборка нашего монстра
Настройка Роутера MR3020.
Первым делом начнем с роутера. Я долго думал что выбрать OR-WRT или CyberWRT. OR-WRT гибок в настройках, но все редактирование и внесения своих настроек осуществляется через терминал с помощи программы Putty. А так как Я боялся на тот момет работать через терминал, Я выбрал где есть графический интерфейс это CyberWRT, плюс возможно подключение через USB порт.
Для того что бы изменить прошивку нашего роутера, нужно скачать прошивку CyberWrt MR3020.

Как мы скачали, делаем следующее:

1) Включить роутер и подождать загрузки.
2) Зайти и залогиниться на 192.168.0.254 (по умолчанию admin\admin)
3) Найти в меню слева System Tools, там пункт System Upgrade и залить прошивку через веб-форму
4) Дождаться перезагрузки (порядка 4х минут)
Роутер готов к настройке.

Можно выбрать один из режимов: «Точка доступа» и «Клиент Wi-Fi сети». Для настройки режима Клиента:
- выберите режим «Клиент Wi-Fi сети»
- IP адрес Вашего устройства (по этому адресу будет доступно Ваше устройство. Постарайтесь выбрать незанятый IP. Например: 192.168.1.100)
- Маска подсети (255.255.255.0)
- Шлюз (например, IP Вашего домашнего роутера или шлюза - 192.168.1.1)
- Тип шифрования (тип шифрования, используемый в Вашей домашней сети)
- Пароль (пароль, для доступа к Вашей домашней сети)

Если сделали все правильно, то у вас пойдет RSS строка в нижней части экрана.

Когда все заработала, у вас появятся раздел модули, там вы находите модуль "РОБОТ". Устанавливайте. Готово.

Подключение L298N, Arduino Nano, MR3020, Камера и другое

На картинке все наглядно показано, но на всякий случай напишу.

Вывод Arduino DIGITAL 4 - к IN1 пину модуля.
Вывод Arduino DIGITAL 5 - к IN2 пину модуля.
Вывод Arduino DIGITAL 6 - к IN3 пину модуля.
Вывод Arduino DIGITAL 7 - к IN4 пину модуля.
Вывод Arduino GND - к GND клеме модуля.
GND клема модуля - Минус аккумулятора.
7.2V клема модуля - Плюс аккумулятора.
RM клема модуля - Правый моторчик.
LM клема модуля - Левый моторчик.
USB порт Arduino - Подключаем к USB хаб
Web Камера - Подключаем к USB хаб
USB хаб - Подключаем к USB роутера

Питание так скажем логистики, осуществляется вторым аккумулятором. Емкость 2000 mA/h 5v, дабы не спалить роутер. Да и с двумя аккумуляторами робот стабильней работает. Так вот, его мы подключаем просто в разъем микро USB. Через USB хаб который подключен к роутету питанию уже получает и камера и наша ардуинка.

Скетч для Arduino Nano
Вам необходима скачать библиотеку CyberLib , она предназначена только для Atmega 328.

/* Версия 1.5 WIFI Tanka на DD1-1 Реализовано: 1) Движение камеры по X и Y 2) Гудок 3) Фары 4) Звук при включении */ #include // Подключаем библиотеку #include // Подключаем библиотеку сервоприводов Servo myservo1; Servo myservo2; long previousMillis; // Нужно для таймера int LedStep = 0; // Счетчик для LED int i; #define robot_go {D4_High; D5_Low; D6_Low; D7_High;} #define robot_back {D4_Low; D5_High; D6_High; D7_Low;} #define robot_stop {D4_Low; D5_Low; D6_Low; D7_Low;} #define robot_rotation_right {D4_High; D5_Low; D6_High; D7_Low;} #define robot_rotation_left {D4_Low; D5_High; D6_Low; D7_High;} #define LED_ON {D13_High;} #define LED_OFF {D13_Low;} #define Headlamp_ON {D8_Low;} #define Headlamp_OFF {D8_High;} #define Buzzer {tone(11, 494, 500);} #define init {D4_Out; D5_Out; D6_Out; D7_Out; D8_Out; D13_Out;} uint8_t inByte; void setup() { myservo1.attach(9); // Подключение сервоприводов к порту myservo2.attach(10); // Подключение сервоприводов к порту D11_Out; D11_Low; // Динамик Headlamp_OFF; // Фары выкл по умолчанию for(uint8_t i=0; i<12; i++) beep(80, random(100, 2000)); //звуковое оповещение готовности робота init; // Инициализация портов //Buzzer; // Инициализация портов динамика UART_Init(57600);// Инициализация порта для связи с роутером wdt_enable (WDTO_500MS); } void loop() { unsigned long currentMillis = millis(); // Обновление таймера if (LedStep == 0 && currentMillis - previousMillis > 500){ // Задержка 0,5 сек. previousMillis = currentMillis; // обновление таймер LED_ON; // Включить LedStep = 1; // Счетчик шагов } if (LedStep == 1 && currentMillis - previousMillis > 500){ // Задержка 0,5 сек. previousMillis = currentMillis; // обновление таймер LED_OFF; // Выключить LedStep = 2; // Счетчик шагов } if (LedStep == 2 && currentMillis - previousMillis > 500){ // Задержка 0,5 сек. LedStep = 0; // Счетчик шагов } if (UART_ReadByte(inByte)) //Еесли что то пришло { switch (inByte) // Смотрим какая команда пришла { case "x": // Остоновка робота robot_stop; break; case "W": // Движение вперед robot_go; break; case "D": // Повопорт влево robot_rotation_left; break; case "A": // Поворот вправо robot_rotation_right; break; case "S": // Движение назад robot_back; break; case "U": // Серво поднимается myservo1.write(i -= 20); break; case "J": // Серво опускается myservo1.write(i += 20); break; case "H": // Серво поворачивается влево myservo2.write(i += 20); break; case "K": // Серво поворачивается вправо myservo2.write(i -= 20); break; case "Y": // Серво поворачивается 85 myservo1.write(85); myservo2.write(85); break; case "F": // Включить фары Headlamp_ON; break; case "V": // Выключить фары Headlamp_OFF; break; case "I": // Гудок Buzzer; break; } } wdt_reset(); }

Внесение изменений в роутер
Для того что бы управлять камерами были внесены изменения в библиотеку роутера. Вам нужно будет скачать измененный код и заменить исходные файлы ним.

Часть 1. Подготовка ESP8266

Зачем эта статья? На хабре уже есть ряд статей про использование ESP в разных конфигурациях, но почему-то без подробностей о том, как именно все подключается, прошивается и программируется. Типа «я взял ESP, две пальчиковые батарейки, DHT22, закинул в коробку, потряс часик и термометр готов!». В итоге, получается странно: те, кто уже работают с ESP не видят в сделанном ничего необычного, а те, кто хочет научиться - не понимают с чего начать. Поэтому, я решил написать подробную статью о том, как подключается и прошивается ESP, как его связать с Arduino и внешним миром и какие проблемы мне попадались на этом пути. Ссылки на Aliexpress привожу лишь для представления порядка цен и внешнего вида компонентов.

Итак, у меня было два микроконтроллера, семь разных сенсоров, пять источников питания, температурный датчик DHT22 и целое множество проводков всех сортов и расцветок, а так же бессчетное количество сопротивлений, конденсаторов и диодов. Не то, чтобы все это было необходимо для термометра, но если уж начал заниматься микроэлектроникой, то становится трудно остановиться.


Питание

Для работы ESP8266 нужно напряжение 3.3В и ток не ниже 300мА. К сожалению, Arduino Uno не в состоянии обеспечить такой ток, как не в состоянии обеспечить его и переходники USB-UART (программаторы) типа FT232RL - их предел около 50мА. А значит придется организовать отдельное питание. И лучше бы, чтобы Arduino тоже работал от 3.3В, чтобы избежать проблем типа «я подал пятивольтовый сигнал на вывод RX модуля ESP, почему пахнет паленой пластмассой?».

Есть три решения.

2. Купить готовый модуль с регулятором напряжения, понижающий 5В до 3.3В. Пожалуй, это самый удобный вариант.

3. Собрать модуль самому из регулятора AMS1117 и одного танталового конденсатора на 22мкФ.

Я выбрал третий пункт, поскольку мне часто нужно 3.3В, я жадный и я люблю встраивать регуляторы прямо в блоки питания.

С AMS1117 все просто: если положить его текстом вверх, то напряжение на ногах растет слева направо: 0(Gnd), 3.3В (Vout), 5В (Vin).
Между нулем и выходом нужен танталовый конденсатор на 22мкФ (так по инструкции , что будет если поставить электролитический - я не проверял). У танталового SMD-конденсатора плюс там, где полоска. Немного чудовищной пайки совершенно не предназначенных для такого варварства SMD-компонентов и:

Обязательно проверяйте выходное напряжение. Если оно значительно меньше 3.3В (например, 1.17В) - дайте регулятору остыть после пайки и проверьте контакты. Если поставите конденсатор больше, чем на 22мкФ, то мультиметр может показать более высокое напряжение.

Почему именно AMS1117? Он широко используется. Его вы можете найти почти везде, даже в Arduino Uno, как правило, стоит AMS1117-5.0.
Если вы знаете что-то схожих габаритов и цены, еще более простое в использовании - напишите, пожалуйста.

Важный момент. Не знаю уж почему, но AMS1117 крайне капризно относится к качеству соединений. Контакты должны быть надежны. Лучше - пропаяны. Иначе он на тестах выдает 3.3В, но под нагрузкой не выдает ничего.

Подключение ESP8266

Я выбрал модель 07, поскольку у нее отличный металлический экран, который работает как защита от наводок, механических воздействий и как радиатор. Последнее обеспечивает разницу между сгоревшим модулем и просто нагревшимся. Кроме того, есть гнездо под внешнюю антенну.

Чтобы чип запустился нужно соединить VCC и CH_P через резистор 10кОм. Если такого нет, то сгодится любой из диапазона 1-20кОм. Кроме того, конкретно модель 07 еще требует, чтобы GPIO15 (самый ближний к GND) был «на земле» (этого на картинке не видно, потому что соединение с другой стороны).

Теперь берем переходник USB-UART, переключаем его на 3.3В и подключаем RX к TX, TX к RX и GND к «земле» (у меня без этого передача нестабильна). Если вы не можете переключить на 3.3В, то можно использовать простейший резисторный делитель напряжения: соедините ESP RX с TX переходника через сопротивление в 1кОм, а ESP RX с «землей» через 2кОм. Существует масса более сложных и более надежных способов связать 3.3В и 5В, но в данном случае и так сойдет.

И соединяемся на скорости 9600 по нужному COM-порту (можно посмотреть в диспетчере устройств).

Я использую SecureCRT, Putty тоже подойдет, а ценители Линукса и так знают, что делать и где смотреть.

(AT+RST перезагружает чип)

Если ничего не происходит - выключите - включите питание, если все равно ничего не происходит - проверьте соответствие TX/RX, попробуйте переставить их местами или припаять к чипу.

Иногда чип в ходе издевательств экспериментов зависает и тогда его надо обесточить, в том числе отключив и переходник (например, вытащив его из USB), поскольку чипу хватает даже поступающих крох питания, чтобы упорно тупить и не работать.

Иногда фокусы с переходником вешают USB-порт. Можно в качестве временного решения использовать другой USB-порт, но вообще лучше перезагрузить компьютер.

Иногда при этом меняется номер COM-порта. Под Linux это можно решить с помощью udev.

Если вместо текста приходит мусор, то проверьте настройки скорости. Некоторые старые чипы работают на 115200.

На старте чип нагревается, но если он реально горячий и продолжает греться - отключайте и проверяйте все соединения. Чтобы на корпус не попадало +3.3В, чтобы 5В к нему вообще никуда не приходили, чтобы «земля» переходника была соединена с «землей» чипа. Модели с металлическим экраном очень трудно сжечь (но нет ничего невозможного), а на модели без экранов жалуются, мол даже небольшая ошибка может стать последней в жизни чипа. Но это я не проверял.

Прошивка

Мой выбор - NodeMCU . У нее проблемы с памятью и поддержкой железа, но это многократно окупается простотой кода и легкостью отладки.

Так же потребуются NodeMCU flasher и LuaLoader (последнее - опционально, есть и другие клиенты для работы с этой прошивкой).

Выключаем чип. Подсоединяем GPIO0 к земле и включаем чип:

Если ничего не происходит и поля AP MAC/STA MAC пустые - проверьте еще раз, чтобы GPIO0 был на «земле».
Если прошивка началась, но зависла - посмотрите в закладке Log, у меня почему-то конкретно этот чип отказался прошиваться на FT232RL, но зато без проблем прошился на PL2303HX на скорости 576000. PL2303HX в указанном варианте не имеет переключения на 3.3В, чтобы им воспользоваться нужно открыть пластиковый корпус и перепаять провод с 5V на 3.3V, есть варианты с пятью выходами : 3.3, 5, TX, RX, Gnd.


Обратите внимание: STA MAC поменялся. Подозреваю, что flasher его неправильно показывал, но требуется проверка.

Для экономии сил и нервов можно взять готовый или полуготовый вариант.

Есть одноразовые адаптеры с удобной разводкой.
Есть

Эта статья также доступна на следующих языках: Тайский

  • Next

    Огромное Вам СПАСИБО за очень полезную информацию в статье. Очень понятно все изложено. Чувствуется, что проделана большая работа по анализу работы магазина eBay

    • Спасибо вам и другим постоянным читателям моего блога. Без вас у меня не было бы достаточной мотивации, чтобы посвящать много времени ведению этого сайта. У меня мозги так устроены: люблю копнуть вглубь, систематизировать разрозненные данные, пробовать то, что раньше до меня никто не делал, либо не смотрел под таким углом зрения. Жаль, что только нашим соотечественникам из-за кризиса в России отнюдь не до шоппинга на eBay. Покупают на Алиэкспрессе из Китая, так как там в разы дешевле товары (часто в ущерб качеству). Но онлайн-аукционы eBay, Amazon, ETSY легко дадут китайцам фору по ассортименту брендовых вещей, винтажных вещей, ручной работы и разных этнических товаров.

      • Next

        В ваших статьях ценно именно ваше личное отношение и анализ темы. Вы этот блог не бросайте, я сюда часто заглядываю. Нас таких много должно быть. Мне на эл. почту пришло недавно предложение о том, что научат торговать на Амазоне и eBay. И я вспомнила про ваши подробные статьи об этих торг. площ. Перечитала все заново и сделала вывод, что курсы- это лохотрон. Сама на eBay еще ничего не покупала. Я не из России , а из Казахстана (г. Алматы). Но нам тоже лишних трат пока не надо. Желаю вам удачи и берегите себя в азиатских краях.

  • Еще приятно, что попытки eBay по руссификации интерфейса для пользователей из России и стран СНГ, начали приносить плоды. Ведь подавляющая часть граждан стран бывшего СССР не сильна познаниями иностранных языков. Английский язык знают не более 5% населения. Среди молодежи — побольше. Поэтому хотя бы интерфейс на русском языке — это большая помощь для онлайн-шоппинга на этой торговой площадке. Ебей не пошел по пути китайского собрата Алиэкспресс, где совершается машинный (очень корявый и непонятный, местами вызывающий смех) перевод описания товаров. Надеюсь, что на более продвинутом этапе развития искусственного интеллекта станет реальностью качественный машинный перевод с любого языка на любой за считанные доли секунды. Пока имеем вот что (профиль одного из продавцов на ебей с русским интерфейсом, но англоязычным описанием):
    https://uploads.disquscdn.com/images/7a52c9a89108b922159a4fad35de0ab0bee0c8804b9731f56d8a1dc659655d60.png